Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 13(33): 39282-39290, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34387481

RESUMO

Facile and scalable fabrication of α-Fe2O3 photoanodes using a precursor solution containing FeIII ions and 1-ethylimidazole (EIm) in methanol was demonstrated to afford a rigidly adhered α-Fe2O3 film with a controllable thickness on a fluorine-doped tin oxide (FTO) substrate. EIm ligation to FeIII ions in the precursor solution brought about high crystallinity of three-dimensionally well-interconnected nanoparticles of α-Fe2O3 upon sintering. This is responsible for the 13.6 times higher photocurrent density (at 1.23 V vs reference hydrogen electrode (RHE)) for photoelectrochemical (PEC) water oxidation on the α-Fe2O3 (w-α-Fe2O3) photoanode prepared with EIm compared with that (w/o-α-Fe2O3) prepared without EIm. The w-α-Fe2O3 photoanode provided the highest charge separation efficiency (ηsep) value of 27% among the state-of-the-art pristine α-Fe2O3 photoanodes, providing incident photon-to-current conversion efficiency (IPCE) of 13% at 420 nm and 1.23 V vs RHE. The superior ηsep for the w-α-Fe2O3 photoanode is attributed to the decreased recombination of the photogenerated charge carriers at the grain boundary between nanoparticles, in addition to the higher number of the catalytically active sites and the efficient bulk charge transport in the film, compared with w/o-α-Fe2O3.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...